Quantitative trait loci associated with natural diversity in water-use efficiency and response to soil drying in Brachypodium distachyon.

نویسندگان

  • David L Des Marais
  • Samsad Razzaque
  • Kyle M Hernandez
  • David F Garvin
  • Thomas E Juenger
چکیده

All plants must optimize their growth with finite resources. Water use efficiency (WUE) measures the relationship between biomass acquisition and transpired water. In the present study, we performed two experiments to understand the genetic basis of WUE and other parameters of plant-water interaction under control and water-limited conditions. Our study used two inbred natural accessions of Brachypodium distachyon, a model grass species with close phylogenetic affinity to temperate forage and cereal crops. First, we identify the soil water content which causes a reduction in leaf relative water content and an increase in WUE. Second, we present results from a large phenotyping experiment utilizing a recombinant inbred line mapping population derived from these same two natural accessions. We identify QTLs associated with environmentally-insensitive genetic variation in WUE, including a pair of epistatically interacting loci. We also identify QTLs associated with constitutive differences in biomass and a QTL describing an environmentally-sensitive difference in leaf carbon content. Finally, we present a new linkage map for this mapping population based on new SNP markers as well as updated genomic positions for previously described markers. Our studies provide an initial characterization of plant-water relations in B. distachyon and identify candidate genomic regions involved in WUE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon

The temperate wild grass Brachypodium distachyon (Brachypodium) serves as model system for studying turf and forage grasses. Brachypodium collections show diverse responses to drought stress, but little is known about the genetic mechanisms of drought tolerance of this species. The objective of this study was to identify quantitative trait loci (QTLs) associated with drought tolerance traits in...

متن کامل

Interactive effects of water limitation and elevated temperature on the physiology, development and fitness of diverse accessions of Brachypodium distachyon.

An enduring question in plant physiology and evolution is how single genotypes of plants optimize performance in diverse, often highly variable, environments. We grew 35 natural accessions of the grass Brachypodium distachyon in four environments in the glasshouse, contrasting soil water deficit, elevated temperature and their interaction. We modeled treatment, genotype and interactive effects ...

متن کامل

The identification of new candidate genes Triticum aestivum FLOWERING LOCUS T3‐B1 (TaFT3‐B1) and TARGET OF EAT1 (TaTOE1‐B1) controlling the short‐day photoperiod response in bread wheat

Perception of photoperiod changes enables plants to flower under optimum conditions for survival. We used doubled haploid populations of crosses among Avalon × Cadenza, Charger × Badger and Spark × Rialto and identified short-day flowering time response quantitative trait loci (QTL) on wheat chromosomes 1BS and 1BL. We used synteny between Brachypodium distachyon and wheat to identify potential...

متن کامل

Natural variation, differentiation, and genetic trade-offs of ecophysiological traits in response to water limitation in Brachypodium distachyon and its descendent allotetraploid B. hybridum (Poaceae).

Differences in tolerance to water stress may underlie ecological divergence of closely related ploidy lineages. However, the mechanistic basis of physiological variation governing ecogeographical cytotype segregation is not well understood. Here, using Brachypodium distachyon and its derived allotetraploid B. hybridum as model, we test the hypothesis that, for heteroploid annuals, ecological di...

متن کامل

Identification and Mapping of Quantitative Trait Loci Associated with Salinity Tolerance in Rice (Oryza Sativa) Using SSR Markers

Salinity stress is one of the most widespread soil problems next to drought, in rice growing areas. ReducingSodium (Na+), while maintaining Potassium (K+) uptake in rice are traits that would aid in salinity tolerance.Therefore, the identification of quantitative trait loci (QTLs) associated with those for Na+ and K+uptake, will enable breeders to use marker-assisted selection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant science : an international journal of experimental plant biology

دوره 251  شماره 

صفحات  -

تاریخ انتشار 2016